Видеокурс по SIMATIC STEP 7


Вязкость расплавов

Вязкость расплавов
Основной характеристикой жидкого агрегатного состояния, играющей существенную роль в целом ряде тепловых и технологических процессов, является вязкость. Вязкость характеризует внутреннее трение в жидкости. Согласно уравнению Ньютона, силы внутреннего трения связаны со скоростью движения следующей зависимостью

F = S•η(dω/dn), Н (2)

гдe S – поверхность двух слоев жидкости (см2),
сдвигающихся друг относительно друга
на расстоянии dn, см, со скоростью dω, см/сек.

В данном уравнении η — коэффициент вязкости или, как его называют, вязкость жидкости. Если принять все величины равными единице, то вязкость характеризует силу (н), действующую на 1 см2 поверхности слоев жидкости, отстоящих один от другого на 1 см и движущихся с разницей скоростей в 1 см/сек.

Вязкость

η = н•сек/м2. (3)

Вязкость расплавленных шлаков определяется строением расплава и силами взаимодействия между отдельными ионами. Различают два типа вязкости: структурную вязкость, обусловленную силами связи атомов в крупных комплексных ионах, подвижность которых ограничена, и электростатическую вязкость, вызываемую электростатическими силами взаимодействия между катионами и анионами.

Для расплавов, в которых много длинных цепочек и крупных комплексных ионов, вязкость определяется в основном структурой расплава. Именно поэтому кислые расплавы характеризуются высокой вязкостью.

Для основных расплавов, состоящих из мелких легкоподвижных ионов, вязкость обусловлена в основном электростатическими силами, пропорциональным количеству ионов и их заряду, и относительно не велика.

С повышением температуры расплава комплексные ионы частично диссоциируют, крупные ноны дробятся, подвижность всех ионов растет. Поэтому такие условия вызывают значительно более резкое падение вязкости кислых расплавов, чем основных (рисунок 11). Вследствие повышения температуры расплава сразу уменьшается вязкость. Существует целый ряд эмпирических формул, связывающих вязкость с температурой. Для расплавов типа шлака наиболее универсальной является следующая формула

н•сек/м2 , (4)

где a и b – эмпирические коэффициенты;
Т – температура, °К.

Величина, обратная вязкости, характеризует текучесть расплава.



а – кислый расплав;
б – основной расплав

Рисунок 11 – Зависимость вязкости силикатных расплавов от температуры

Величина вязкости характеризует внутреннюю структуру жидкости. Так, например, удлинение цепи кремнеземистых групп в расплавах повышает вязкость расплавов при одной и той же температуре. Наибольшей вязкостью отличается силикатный расплав из чистого SiO2 (кварцевый расплав), строение которого имеет наиболее длинные цепочки.
При введении в силикатный расплав основных окислов FeO, CaO, MgO, которые диссоциируют и освобождают ионы кислорода, происходит разрыв цепочек по кислороду (рисунок 12), длина цепочек уменьшается, что вызывает падение вязкости расплава. На этом явлении основано флюсование, применяемое для разжижения шлака.



Рисунок 12 – Схема дробления кислых цепочек добавкой
основных окислов


Аргонодуговая сварка для предотвращения образования холодных трещин

В качестве одной из мер предотвращения образования холодных трещин предлагается аргонодуговая обработка сварного соединения без расплавления...

Сварные соединения с щелевой разделкой

Сварные соединения, выполненные с такой разделкой кромок менее склонны к образованию холодных трещин вдоль шва и обладают более...

Кремнеземистые огнеупоры

К огнеупорам этой группы, согласно классификации, относится широко известный в практике...