Видеокурс по SIMATIC STEP 7


Электроэрозионная обработка

Электроэрозионная обработка
Электрофизическая обработка основана на электроэрозионном разрушении материала детали, поэтому получила название электроэрозионной обработки (ЭЭО).

Электроэрозионная обработка использует расплавление и испарение малых порций металла импульсами электрической энергии, которые вырабатываются периодически специальными генераторами. Обработка ведется в жидкой среде, и развивающиеся в межэлектродном промежутке в момент прохождения разряда гидродинамические силы выбрасывают расплавленную порцию металла из зоны обработки. Это позволяет электроду постепенно внедряться в обрабатываемую заготовку, которая присоединяется к тому полюсу, на котором выделяется больше тепла. Разряд, т. е. пробой межэлектродного промежутка, возникает каждый раз между наиболее сближенными точками анода и катода. В результате каждого импульса на поверхности электродов образуются небольшие углубления, форма и размеры которых зависят от мощности импульса, его длительности и свойств обрабатываемого материала. Следует обратить внимание на то, что удаление материала происходит на обоих электродах (с заготовки и с инструмента). Разрушение электрода-инструмента (или износ) — явление нежелательное не только потому, что на него бесполезно затрачивается энергия, но и из-за снижения точности обработки и экономичности процесса. Уменьшения износа электрода-инструмента добиваются выбором для его изготовления соответствующих материалов, применением униполярных импульсов, подключением электрода-инструмента к тому из полюсов источника тока, на котором его износ будет минимальным.

Различные материалы по-разному противостоят эрозионному разрушению. Чем выше температура плавления и кипения материала, тем больше он подходит для использования в качестве электрода- инструмента. Большое значение имеет также теплопроводность материала. Наоборот, механические свойства материала, его твердость и вязкость почти не влияют на интенсивность эрозии.

Эрозионная обработка осуществляется импульсами различной про должительности, это зависит от типа генератора. Чем короче им пульс, тем более высокие температуры развиваются в канале разряда тем сильнее сказывается различие в интенсивности эрозии заготовку и инструмента. При коротких импульсах мгновенная мощность очень велика, и вследствие торможения электронов большая часть энергии выделяется в виде тепла на аноде. Температура в анодном пятне резко повышается и может достигать 10000° С. В таких условиях преобладает испарение металла. При одинаковом материале заготовки и электрода-инструмента более интенсивно будет разрушаться тот из них. который подключен к плюсу источника тока, т. е. является анодом. Поэтому электрод-инструмент при использовании коротких импуль сов тока делают катодом, т. е. обработку ведут при прямой полярности. Добиться заметного снижения износа электрода-инструмента в условиях чрезмерно высокой температуры выбором материала с более высокой температурой плавления в этом случае не удается.

При импульсах значительной продолжительности мощность раз ряда и температура в канале разряда обычно намного ниже. В этом случае износ электрода в значительной степени зависит от теплопроводности материала, из которого он изготовлен. Преобладающим здесь является ионный процесс; вследствие ионной бомбардировки больше тепла выделяется на катоде. Поэтому инструмент правильнее подсоединять к плюсу источника тока, т. е. делать его анодом (обратная полярность). Выбором материала электрода с высокой температурой плавления и высокой теплопроводностью в данном случае можно добиться значительного снижения его износа. Одним из самых стойких материалов, применяемых для изготовления электродов-инструментов, является графит. Даже при малой длительности импульсов (до 100 мкс) электроды из него изнашиваются в 5-10 раз меньше, чем медные. При увеличении продолжительности импульсов до 1000 2500 мкс износ электродов из графита оказывается в 100-500 раз меньше, чем медных.

Импульсы малой длительности (до десятков микросекунд) пригодны для обработки твердых сплавов и других тугоплавких материалов, импульсы большой продолжительности (до нескольких тысяч микросекунд) — для обработки стали и вообще материалов со сравнительно небольшой температурой плавления. Применение импульсов большой продолжительности при обработке твердых сплавов нежелательно не только из-за невысокой температуры в канале разряда, но и по той причине, что быстрое охлаждение твердого сплава при прогреве его на значительную глубину может вызвать термические напряжения и образование микротрещин. При большой продолжительности импульсов, когда преобладает не взрывное испарение металла, а происходит перевод его в капельножидкое состояние, ухудшается выброс отходов из зоны обработки и, чтобы не снизить эффективности процесса, применяют прокачку рабочей жидкости через меж- электродный промежуток. Перевод металла в капельножидкое состояние, вместо парообразования, снижает энергоемкость процесса, делает его более экономичным.

Показатели качества продукции

Под продукцией понимают материализованный результат процесса трудовой деятельности, обладающий полезными свойствами...

Формирование шероховатости поверхности детали

На шероховатость поверхности деталей в процессе их обработки оказывает влияние большое число факторов. В частности...

Зависимость усталостной прочности деталей от физико-механических свойств

Наряду с изменением микрогеометрии поверхности в процессе механической обработки происходят значительные изменения...